DIY Alignment Equipment; maybe not as good as hoped - Hot Rod Forum : Hotrodders Bulletin Board
Hotrodders.com -- Hot Rod Forum



Register FAQ Search Today's Posts Unanswered Posts Auto Escrow Insurance Auto Loans
Hot Rod Forum : Hotrodders Bulletin Board > Tech Help> Suspension - Brakes - Steering
User Name
Password
lost password?   |   register now

Reply
 
LinkBack Thread Tools
  #1 (permalink)  
Old 05-14-2013, 09:10 AM
Registered User
 
Last photo:
Join Date: Aug 2008
Location: Nova Scotia, Canada
Posts: 337
Wiki Edits: 0

Thanks: 0
Thanked 2 Times in 2 Posts
DIY Alignment Equipment; maybe not as good as hoped

Hereís three suspension/alignment DIY projects that may be of interest. Or at least good for a laugh! Although they all work, none are particularly successful when consideration is made to accuracy and ease of use. But they were fun to make and I learned a few things.

Wheel Weight Gauge

A while back, I became somewhat interested in corner weight balancing. I found it somewhat confusing as there appeared to be two different points of view in performing the calculations. Fred Puhn, in his book ďHow To Make Your Car HandleĒ (1981) prefers setting the left front to rear ratio the same as the right front to rear ratio. The current, and predominate method, is to target for a 50% cross weight balance.

I thought Iíd like at least see what my corner weights were, and that would take a set of scales. A little investigation showed them to be too expensive for probably a one time use, so I looked at other possibilities. It was suggested to me to look into building one of those home-made lever units, utilizing an old brake or clutch cylinder and a pressure gauge. Hereís one type:



I didnít like it much, as trying to maintain the tire ďjust off the floorĒ as well as trying to read a small gauge with my far-sighted vision, wasnít for me. So I came up with another idea, sort of like a mini-engine hoist. Hereís the basic idea in a theoretical sketch:



The lever length is adjusted so the pressure gauge will read twice the weight (but of course in psi).

Now I had one guideline to follow with all this (besides Safety), and that was minimum expense as if it didnít work, I didnít want to be out much money. My only real expenses were the bottle jack ($16) and the 2000 psi pressure gauge ($13). As you can see in the picture below, it looks quite odd, but a lot of that is I used what I had... bits from an old broken exercise machine, old rusty flat plate and angle iron, old nuts and bolts, etc. I even painted it, and the spray can came from an unknown history (canít remember why I bought it many years ago).

(Please donít look too closely at the weldingÖ.LOL)



In the next pic you can see how I modified the bottle jack, at least externally.



I did find a YouTube video on this type of thing, but I was a little bit misled by one part. The fellow says to measure the bottom of the hydraulic ram to find the cross-sectional area. This does not appear to be correct. The inside diameter of the cylinder should be measured instead, and the area calculated from that. In fact, as the area is proportional to the radius squared, it doesnít take much error in your diameter measurement to put things out quite a bit. It is best to determine the effective area by test, and then use that to work out the lever lengths of the lifting arm. Hereís a link to the YouTube video:


In the next pic, you can see my little Corner Jack in use. Basically, I lift the tire off the floor, slide a piece of paper under the tire, and slowly lower the tire back down until the paper starts to feel tight to slide around. Itís like using a feeler gauge to check valve lash. (yes, the car is dirty with bug splatter, grime and other stuff!)



Öand now comes the real problem. As you raise the tire, you also raise the whole car, and where do you stop to take a reading as the gauge just keeps reading higher the more you lift the wheel. The hope is because you are making the same error in every wheel, they will cancel outÖ. Well, thatís the hope anyway.

Thereís a small problem with repeatability, mostly to do with the fact I didnít grease or oil any of the pivot points yet, however it wasnít bad as long as I always released the pressure until the paper felt friction with the tire, and didnít try raising the tire until the paper became free.

Another issue is trying to make small measurements on the gauge. Not good as the gauge resolution in graduated in 50 psi increments (which equates to 25 lb increments of wheel weight). However, itís not too bad judging partial readings.

I did make take some readings today, although they arenít quite right as I didnít disconnect the anti-sway bars. This is a very noticeable factor with the front wheels and the numbers are way too high. The rear suspension, with its much smaller sway bar yielded numbers closer to what is expected.

I know the numbers are way to high as if I add the total of all four wheels, I get more than the car is expected to weigh. This is a problem when jacking up a single wheel, although I expect better results with the anti-sway bars disconnected.

Hereís the results of my numbers. I calculated the Front/Back method using Fredís book as a guide



I admit to getting lazy with the 50% cross weight method and used an on-line calculator which can be found here:

Corner Balance Calculator

I find it quite interesting that both methods yield such a close result. A change of 12.5 lbs per wheel with Fredís method and 11.9 with the cross weight method.

In either case, the results looks pretty good, although more variance may show up once the anti-sway bars are disconnected.

The odd thing to me, is it seems sort of senseless to make the measurements with the driver (me) or equivalent weight, in the car for public road use with a two-seater car. Because the driver and passenger weight can change, I think itĎs best to corner balance with no-one in it. I seem to remember Des Hammill saying more or less the same thing in his Suspension book for Sports and Kit Cars.

Because the driver and passenger weight can change so much, I would suspect the 12.5 or 11.9 lbs is probably negligible. Iím sure itís a different story for the track, but I donít think IĎll ever do that.

Overall, my Corner Weight Gauge was a fun thing to design and build, but I donít think itís accurate enough to do more than get ďcloseĒ. The whole concept of jacking up one wheel at a time has an inherent error plus the gauge doesnít have very good resolution.

However I suppose I can be satisfied with the results I have. At least I know I donít have a drastic mismatch with corner weighting. All for $29 and a little elbow grease.

Castor/Camber Gauge

This recent project was to make a castor/camber gauge. There are commercial gauges available, but making one from old scrap (so no cost) as well as having a bit of fun seems to intrigue me more.

Camber is the easy one to grasp. Itís simply the angle the wheel leans in or out from vertical. Castor is same as the kingpin angle fore and aft, if one were to be actually using kingpins, however it wasnít so easy to figure out how to measure it with the wheels on. More on that further down.



I have a digital angle level gauge, which I see is getting less expensive these days depending on where one purchases it. Iím not counting the cost of it in this project as I already have it for other purposes:



Next I needed to make some sort of bracket that can be fastened to the wheel. I wanted a bracket that would stay fixed without holding it. My basic concept is shown here (note moving the lower arms to their 120 degree positions causes the rubber wheels to push harder against the rim):



The actual finished unit is shown here:



I did have one setback. Once I installed the first version, I noticed the arms would spring away from the wheel rim outer edge about 1/32Ē. I didnít like that, so came up with a modification where I could turn a few screws to pull in the gaps. I could have used springs, but went with a bit of rubber hose instead:



Hereís a pic of the finished assembly:



And hereís the final bracket installed with gauge. I had to add a thin steel plate to the aluminium arm so the Indicator built in magnets had something to hold on to.



Many commercial gauges require you to rotate the wheels to the right and left, 20 degrees each way and read total castor from a scale. Sweeping over this 40 degree arc effectively eliminates the camber angle from the equation.

Hereís a pic of a commercial gauge which uses a +/- 15 degree sweep. Note the same bubble tube is used for both measurements, but the castor has twice the number of degrees compared to the camber measurement.



If we take a hypothetical high castor angle of 8 degrees, as measured through a 30 degree sweep, the camber gauge will read 2 degrees (not counting the actual camber) over 15 degrees of steering angle.

Ö and 2 divided by 8 = Sin (15) Actually it is more like 14.5, but the error is small so they rounded it off to 15 degrees.

When I use my gauge, Iíll check the gauge at +15 and then again at -15 (with 15 degree chalk marks on the floor). Iíll add the two together and divide by 2 to get the average reading, thereby eliminating any camber.

As the Sin 15 will be approx 0.25, my Castor will be = 2*(reading at pos 15 + reading at neg 15)

For example, if I have a neg 15 reading of 2.5 and a pos 15 reading of 1.5 (Camber is -0.5 degrees), my Castor will be 8 degrees. A double check shows my swing of +/- 2 degrees divided by 8 degrees yields 0.25 or the Sin (15 degrees).

The next step will be to level the car and make turntables. There is a Youtube video on this where the fellow finds the floor height at each wheel relative to the highest point with a homemade manometer, and uses stick-on floor tiles to make up the difference. He makes pivots for the tires out of two floor tiles with table salt in between. You can use grease although I can see it being messy. The salt idea is clever though.

My next project will be some sort of Toe-In gauge which ought to better than the piece of plywood I previously used to set the toe.

Toe-In Gauge

After finishing my toe-in gauge I have to admit it isnít one of my better accomplishments. I failed to follow the KISS principle and wound up with something overly complicated, made it from what I had laying around which isnít as rigid as I would like, both calibration and set-up are a bit touchy, and during the project, I found a method much easier that I should have used, but kept going anyway.

Basically, I wanted a method that I could use without a helper. It can be a bit tricky using a tape measure by yourself and even if you hook it to toe plates or weight the tape down, it can still move. Itís one thing to ask for help bleeding the brakes because thatís a quick thing to do. Itís another thing to ask for a rather long time commitment as I make measurements, make adjustments, and then repeat many times until the jobís done.

I also wanted to use up junk-box parts and scrap material I had laying around. In fact total cost was $3 for a cheapie laser level at the second hand store and $6 for the mirror. I think that even at full price these levels are usually under $20 unless you buy one with the tripod.

But before I get into this project, a bit about toe-in.

As far as I can tell the basis of measurement is the difference between the track across the front of the tires and the track across the rear of the tires. Not everyone seems to use this method and thereís a lot of erroneous methods on the net that can result in low or high results compared to what the toe actually is. I think it would be best if everyone did away with toe-in as a linear measurement and just specified an angle instead.

I did some research and did find lots of good ideas (some much better than mineÖ sigh), but wound up fixated on some sort of laser measurement. High tech and all that sounded great, but at least itís easier than using string.

My favourite is the plumb-bob method (or you can use a carpenterís square), and is shown below. Unfortunately every description I read doesnít use point B, but merely points A and C. As far as I am concerned, this will not yield correct results. The fore and aft lines need to be apart by the tire diameter. However, one still needs to deal with a tape measure, and that means either a helper, or some weights to help hold the tape in place.



Toe-Plates form the basis for most gauges, as per the simple sketch below. Building them would have been enough as they turned out heavy enough not to move if I was careful with the tape measure. My main error was not using square or rectangular tubing during construction. I should have bought some, but that goes against my grain when trying to build something that might not work. I used heavy angle-iron and thick aluminum plate, but as it can flex a bit, I have to be careful when setting things up.




Below is the theory of a laser gauge. You calibrate the system with the toe plate rails parallel, and when measuring toe-in, you reposition the laser so the reflected beam hitís the same calibration spot. The laser will then be at the same angle as the tires, or so I thought. More on that shortly.



Hereís a sketch of what I planned to make. Itís similar to other designs, but doesnít use a dial indicator. Instead it uses a 160:24 gear ratio to multiply the angle by a factor of 6.667 making it easier to read. The pointer arm length is calculated to 7.8Ē so the scale is doubled to the actual toe-in, i.e. a 1/4Ē reading on the gauge indicates 1/8Ē of toe. This does not rely on the carís track, but does rely on knowing the tire diameter (in my case, 26Ē).



And hereís the final, none-too-pretty, result:



Here is the laser side installed against the wheel rim. Not a super quick job as there are 5 points to consider, making a 4 legged chair look easy.



And another view:



Hereís the laser unit. Notice the laser is rotated by use of a thumbwheel. There is very little hysteresis with it, although it wonít affect the reading as there is no hysteresis between the laser and the pointer as all the gear lash is removed (small gear is on a moveable plate for this purpose).

The laser is mounted from underneath using itís tripod hole and with the pointer at zero and the rails precisely parallel, the little angle brackets are moved back and forth as required.



All in all, it does work, although I did have one problem. First I measured the toe-in using my gauge and then I did the plumb-bob method (which I highly recommend) and unfortunately the toe-in was different by a small, but unacceptable amount. I double checked the plumb-bob measurements and gave some thought to any flexing with my gauge parts, but couldn't pin anything down.

Eventually I realized it was all in the calibration. When I originally calibrated my gauge, I did it with the two parts parallel and adjusted for zero. This wasn't accurate for two reasons.

The first is because extruded angle iron has rounded edges and not a sharp edge to match up with the tape measure markings, but it's not much of an error. Plus I should have measured at the rim pins instead.

However the main reason was that calibration should not be done with the two pieces parallel and adjusted for zero. It is much better if the two parts are angled to a specific toe-in, the gauge adjusted to read that toe-in, and the laser aligned so the return beam is centered on the target line.

Without getting into it too deeply (as I havn't fully thought it out myself yet), the best analogy I can think of is a piston and crankshaft. When the piston is near TDC, any up or down motion is hard to visibly detect despite moving the crankshaft a small amount. Yet, if the piston was halfway though the stroke, the same small crankshaft rotation moves the piston an easily discernible amount (or you can picture a Sine wave).

To make calibration easier, I made a couple of alignment rods. They are thin-wall metal tubing (old tent poles) that fit over the rim pins. They are of different lengths to match the maximum toe-in on my gauge scale. It's all calibrated now and indicates the same as the plumb-bob measurement and if I set the gauge parts parallel, it still reads zero.

Iím starting to feel better about using the gauge. I find it quite quick to set-up and use now that I'm more familiar with it. Repeatability is quite good. I think I'll use it to adjust my car's toe-in, but at least for the first time I'll do a final double check with the plumb-bob.

And thatís the end of my DIY equipment. I donít recommend building any of it unless you can add improvements, but I hope you found it interesting none-the-less.

*****************

Special Note on the Plumb-Bob Method:

I only used one plumb-bob instead of the two shown previously. I only had one for starters, but with two you need to adjust the string length very carefully so each plumb-bob is close to the floor to make your marks precise.

I just used a heavy nut to counter-balance the plumb-bob. It doesn't have be exactly the same weight as the friction of the string against the tire makes up the difference. Plus the nut can hang quite far off the floor and not cause a problem... meaning an accurate string length isn't terribly important.

And you do need space for the plumb-bob method. The car rolls ahead 1/2 tire circumference and that's almost 41 inches. And then of course it needs to roll well back so you donít have to feed the tape measure under the car and look at marks from an angle. Lots of room needed.

    Advertisement
Reply With Quote Quick reply to this message
Sponsored Links
Advertisement
 
  #2 (permalink)  
Old 05-15-2013, 09:06 PM
texastomeh's Avatar
Registered User
 
Last photo:
Join Date: Jul 2004
Location: Dallas, TX
Posts: 278
Wiki Edits: 0

Thanks: 9
Thanked 6 Times in 5 Posts
Quote:
I hope you found it interesting none-the-less.
Argess, it sounds like you've got waaaay too much time on your hands!!!

I am only joking you of course!! I found your post not only interesting but VERY informative as well. I can readily indentify with it since I just finished (three weeks ago) doing a "start-at square-one" front end alignment after a front suspension rebuild on my '63 T'Bird.

I was lucky enough to find a pair of Fastrax Caster/Camber Gauges with the Toe-in Measurement Adaptors on Craig's List. Bought them for a steal from a local circle track racer that is giving it up. They are like new and handy as a pocket on a shirt.

Long story short I was able to keep tweaking at it until I got my target numbers for CAMBER and TOE-IN.

Had to settle for a little less POSTIVE CASTER that I wanted with the radial tires. The Right strut adjustment was the limiting factor. So, I just decided to set them equal at -1*.

She rides and handles FANTASTIC (for a Two Ton Pig on Ice)!!

Plan to drive her "as-is" for a while, then take her to one of them thar new fanggled electronical alignment shops and let them measure her. Not gonna' let them touch anything - just see how close I really am and tweak her a little if needed.

Again - GREAT POST!!!!

Tom
Reply With Quote Quick reply to this message
  #3 (permalink)  
Old 05-15-2013, 10:53 PM
MARTINSR's Avatar
Brian Martin,Freelance adviser
 
Last photo:
Join Date: Jun 2004
Location: San francisco bay area
Age: 55
Posts: 13,290
Wiki Edits: 0

Thanks: 1,431
Thanked 1,223 Times in 1,078 Posts
Yes GREAT post, wow, what a bunch of great info.


Brian
Reply With Quote Quick reply to this message
  #4 (permalink)  
Old 05-18-2013, 03:37 PM
Registered User
 
Last photo:
Join Date: Aug 2008
Location: Nova Scotia, Canada
Posts: 337
Wiki Edits: 0

Thanks: 0
Thanked 2 Times in 2 Posts
Thanks Guys. The projects were fun and I learned some things too.

As far as too much time on my hands, that is true. I've been somewhat lazy for a long time, but seem to have more energy and interest lately.

Unfortunately, the Missus says "yard work", so no more "fun" stuff for a while.
Reply With Quote Quick reply to this message

Recent Suspension - Brakes - Steering posts with photos

Quick Reply
Message:
Options

Register Now

In order to be able to post messages on the Hot Rod Forum : Hotrodders Bulletin Board forums, you must first register.
Please enter your desired user name (usually not your first and last name), your email address and other required details in the form below.
User Name:
Password
Please enter a password for your user account. Note that passwords are case-sensitive.
Password:
Confirm Password:
Email Address
Please enter a valid email address for yourself.
Email Address:

Log-in

Human Verification

In order to verify that you are a human and not a spam bot, please enter the answer into the following box below based on the instructions contained in the graphic.




Currently Active Users Viewing This Thread: 1 (0 members and 1 guests)
 
Thread Tools

Posting Rules
You may post new threads
You may post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is Off
Trackbacks are On
Pingbacks are On
Refbacks are On


Similar Threads
Thread Thread Starter Forum Replies Last Post
diy alignment ? LEROYDOZOIS Suspension - Brakes - Steering 11 09-07-2012 03:06 PM
DIY alignment 001mustang Suspension - Brakes - Steering 39 03-15-2011 02:34 AM
DIY alignment turntable plates 001mustang Suspension - Brakes - Steering 6 01-09-2011 01:11 PM
350 engine build not as power as hoped... insight? Fry Engine 21 08-10-2009 04:52 PM
good,inexpensive alignment gauge ? sc2dave Suspension - Brakes - Steering 1 03-01-2005 06:39 AM


All times are GMT -6. The time now is 02:53 PM.


Powered by vBulletin® Version 3.8.7
Copyright ©2000 - 2014, vBulletin Solutions, Inc.
Search Engine Optimization by vBSEO 3.6.0 PL2
Copyright Hotrodders.com 1999 - 2012. All Rights Reserved.